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Abstract. Model transformations are at the very heart of the Model-
Driven Engineering paradigm. As modern programs, they are complex,
difficult to write and test, and overall, difficult to understand, maintain,
and reuse. In other paradigms, such as object-oriented programming,
design patterns play an important role for understanding and reusing
code. Many works have been proposed to detect complete design pattern
instances for understanding and documentation purposes, but also par-
tial design pattern instances for quality assessment and refactoring pur-
poses. Recently, a catalog of design patterns has been proposed for model
transformations. In this paper, we propose to detect these design patterns
in declarative model transformation programs. Our approach first detects
the rules that may play a role in a design pattern. Then, it ensures that
the control flow over these rules corresponds to the scheduling scheme in
the design pattern. Our preliminary evaluation shows that our detection
mechanism is effective for both complete and partial instances of design
patterns.

1 Introduction

Model-driven engineering (MDE) is a recent software development approach
that is rapidly growing in popularity [14]. At its core, it makes intensive use
of models as a means for automation and reuse. MDE developers use model
transformations to perform operations on models, such as: evolving, refactoring,
and simulating them [16]. Model transformations, which uses generally a rule-
based declarative paradigm [9], are still manually developed. Therefore, like any
hand-written software programs, model transformations must be well-designed
and implemented in order to be understandable by other developers, be re-used
in other projects, and reduce maintenance efforts.

In other paradigms, such as object-oriented programming (OOP), design pat-
terns play an important role in software design [13]. They are proven solutions
to recurring design problems that complement practices of developers. Design
patterns are described at a higher level of abstraction than the implementa-
tion language to ease communication and comprehension. They are considered
as micro-architecture building blocks from which more complex designs can be
built, thus promoting modularity and reuse. Recently, Lano et al. proposed a
thorough catalog of over 20 design patterns for model transformations [17]. They
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showed that these design patterns reduce complexity and execution time, as well
as improve the flexibility and modularity of model transformations. Although the
intent and application conditions of each pattern are described rigorously, they
chose to define the solution part of the design pattern using a formal notation. To
facilitate their understanding for model transformation engineers and to enable
the automatic instantiation of design patterns in model transformation imple-
mentations, Ergin et al. [10] proposed a dedicated modeling language DelTa with
both a graphical and a textual [12] notation.

With the increasing scale and complexity of utilizing models in MDE, the
model transformations developed are also increasing in scale and complexity.
Furthermore, as with any software product, model transformations are evolving
constantly in development projects. This tends to deteriorate their architecture
and design, which is a burden of maintenance tasks. Nevertheless, design pat-
terns expressed in DelTa impose structure thanks to the abstraction they use.
Therefore, the identification of design patterns implemented in an existing model
transformation can tremendously help the developer in understanding the design,
as well as document the transformation [22]. Even if a design pattern was not
implemented in its integrity in the model transformation, identifying some of its
participants provides valuable feedback to the developer: (1) a missed opportu-
nity to implement it in order to improve the quality, (2) a suggestion to correctly
implement it through refactoring, or (3) the presence of a modified version of
the design pattern, since any design pattern may be implemented with endless
variations [20]. Various design pattern detection mechanisms have proven to be
very efficient [2,4,7,22]. However, these techniques have been applied to impera-
tive OOP code. Detecting design patterns on model transformations comes with
many challenges because they are described (1) declaratively, (2) at the level of
meta-models dealing with types and relations rather than instances, and (3) with
non-deterministic execution of rules.

In this paper, we present an approach to detect complete or partial instances
of design patterns in concrete model transformation implementations. It is a
model finding approach based on a rule engine, where we map model transfor-
mations to an abstract representation and design patterns to rules that these
representations must satisfy. After identifying individual participants of a design
pattern, we verify that the scheduling scheme described in the pattern is sat-
isfied in the transformation. We compute an accuracy score at each detection
step that is finally aggregated and reported. We implemented a prototype where
we encode design patterns defined with the DelTa language as rules and that
automatically maps a complete model transformation implemented in a specific
model transformation language to the abstract representation. We report prelim-
inary results that show our detection mechanism is effective for both complete
and partial instances of design patterns.

In Sect. 2 we provide the necessary background on model transformation and
their design patterns. In Sect. 3 we describe our approach on an example. We
report the results on the effectiveness of our approach in Sect. 4. Finally, we
conclude in Sect. 5.
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2 Background

We first review background on model transformations and their design patterns,
and then discuss different techniques for detecting design patterns in programs.

2.1 Model Transformation

In MDE, a model transformation is the automatic manipulation of a model fol-
lowing a specification defined at the level of metamodels [16]. A model transfor-
mation can be outplace, when it produces a target model from a source model,
such as in a translation, or it can be inplace when it modifies a model and
the result is an updated version of the source model, such as in a simulation.
Typically, a model transformation is defined by a set of declarative rules to be
executed. A rule consists of a pre-condition and a post-condition pattern. The
pre-condition pattern determines the applicability of a rule: it is the pattern that
must be found in the input model to apply the rule. Optionally negative pat-
terns may be specified in the pre-condition to inhibit the application of the rule
if present. The post-condition imposes the pattern to be found after the rule is
applied. Patterns are made up of structural elements (i.e., model fragments) and
of constraints on their attributes. Rules follow a scheduling scheme that defines
the order in which they are applied when a transformation is executed. The
scheduling can be made explicit by the language with a control flow structure
partially ordering rules, such as in Henshin. In some languages, such as ATL,
rules are scheduled implicitly, depending on the causal dependence between the
post-condition of a rule and the pre-condition of another. Features that model
transformation languages support are listed in [9]. A comparison of existing
model transformation tools can be found in [18]. Possible scheduling schema of
model transformations are described in [21].

Fig. 1. Model transformation of entity relation in Henshin
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For example, consider the model transformation defined in the Henshin lan-
guage in Fig. 1. It contains three rules that are scheduled to execute in sequence,
as depicted on the bottom right. This is an excerpt of transformation that cre-
ates database tables and columns from a class diagram. The first rule in the top
left states that if a class is present then create a table and link it with a trace
element unless such a trace already exists for the class.

2.2 Model Transformation Design Patterns

A design pattern expresses a means of solving a common model transforma-
tion design problem: it describes the transformation structure (rules, condition
patterns, and scheduling) that constitute the solution idea. A design pattern
includes also a description of the problem which motivated the pattern, how
such problems can be detected, and the benefits and negative consequences to
consider when using the pattern.

In the mid-2000s, several works proposed design patterns for model trans-
formation. Agrawal et al. [8] defined design patterns for graph transformation
described in a specific model transformation language. Iacob et al. [15] defined
other design patterns for outplace transformations. Levendovszky et al. [19] pro-
posed domain-specific design patterns for model transformation and different
domain-specific languages.

More recently, Lano et al. [17] presented the most comprehensive model trans-
formation design pattern study and defined a catalog of 29 patterns classified
into five categories. For example, these include a design pattern to map objects
before links, to decompose a transformation into phases based on the target
model, the criteria to separate rules so they can be executed in parallel, to
ensure that elements created by a rule are unique, or to individually process all
nodes of a model recursively.

At the same time, Ergin and Syriani [11] presented similar design patterns,
as well as new ones, such as modifying a model iteratively until a fixed point is
reached, or the execution of a modeling language by translating it into another
modeling language that can be simulated.

2.3 DelTa to Describe the Structure of Design Patterns

Lano et al. [17] presented the structure design patterns using a formal language
TSPEC in the form of contracts with pre- and post-conditions that a concrete
model transformation implementing the pattern should satisfy. However, Ergin
and Syriani [12] engineered a domain-specific language, DelTa, dedicated to
represent the structure of model transformation design patterns. Because an
implementation is already available in EMF, we opted to use the DelTa imple-
mentations of Lano et al.’s design patterns.

DelTa is a language to define model transformation design patterns with its
own syntax and semantics. It is independent from existing model transformation
languages. In terms of abstraction, DelTa borrows concepts from various MTLs
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Fig. 2. Entities before relations design pattern

to create a more understandable and common language. Figure 2 represents a
model transformation design pattern in its graphical syntax as described in [10].

A DelTa model specifies the minimal rules (the large rectangles) and nec-
essary rule scheduling (the connections between them) that a concrete model
transformation implementing it should have. Rules consist of the minimal con-
straints and actions on elements of the metamodel that concrete transforma-
tion rules implementing them should specify. Constraints and actions refer to
variables that are typed as entities (rectangles like sEnt) or relations (arrows
between entities) of a metamodel, or traces (dotted lines). For example, in rule
entityMapping, there is a constraint stating that there must be an entity (sEnt).
Furthermore, the n0 symbol on rule elements indicates that trace and the entity
tEnt are part of a negative constraint. These two entities come from different
metamodels (src and trgt). In DelTa, we only reason about entities and rela-
tions, independently from specific metamodel types and relations. Entities are
represented using a UML class notation and their metamodel appears on the top
right. An “x” symbol on an element inside a rule means that this element should
not appear in the concrete transformation rule implementing the DelTa rule.

Color coding of entities and relations inside the rules indicates whether they
are part of the constraint or a type of action of the rule. White elements form
the minimal application pre-condition that a concrete transformation rule imple-
menting it should have. Gray elements are the minimal elements to be created in
the concrete transformation rule. For example, the tEnt and the trace between
it and sEnt must be created. Therefore, the rule entityMapping dictates that
the concrete transformation rule implementing it should look for an entity from
one metamodel and create a new entity from another metamodel, as well as a
trace between them. Elements in black are the minimal elements to be deleted
in the concrete transformation rule.

When a self loop symbol appears on the top left (as it is the case with both
rules in Fig. 2), the DelTa rule is exhaustive: the concrete transformation rule
implementing it should be applied on all of its matches. This may require to
have more than one rule implementing this DelTa rule, for example to match
different metamodel types.

In DelTa, the scheduling is depicted using a control flow notation. The
start node (filled ball) indicates the initial rule of the design pattern. Arrows
between rule blocks indicate a predence order: the concrete transformation rule
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implementing the entityMapping rule should be performed before the one imple-
menting the relationMapping rule. A dashed box containing rules specifies that
the order of execution of the rules it contains is irrelevant to the design pattern.
Entities, rules, and scheduling represent the participants of a model transfroma-
tion design pattern. In this paper, we use model transformation design patterns
expressed in DelTa from [10].

2.4 Design Patterns Detection in Software Engineering

To the best of our knowledge, there is no previous work that tackles the detection
of design patterns in model transformation. Most of the detection approaches
target the patterns of Gamma et al. in object-oriented programs [13]. These
approaches target primarily the structural patterns as these can be detected
by matching the structure of code to one of the pattern [3,22]. To improve the
detection, some projects combine multiple strategies as in [7]. The detection of
behavioral patterns also attracted the interest of the research community. In
De Lucia et al. [2], the authors use model checking to improve the detection of
behavioral patterns. A work similar to our is one in [5]. In this paper, the authors
first identify pattern key participants using a machine learning technique. Then,
they check for the other participants of the pattern and the relations between
them.

3 Design Pattern Detection for Model Transformation

We propose an approach to detect complete and partial instances of design pat-
terns in concrete model transformations. We consider design pattern detection
as a constraint satisfaction problem where a design pattern imposes a specific
structure that a concrete model transformation should contain, and we solve it
using a declarative strategy based on an inference rule engine.

3.1 Overview

As shown in Fig. 3, the detection of a design pattern is encoded as a set of rules.
These rules apply to a set of facts representing the model transformation. The
facts conform to fact templates: a generic abstract representation of transforma-
tion components relevant to design pattern detection. This abstract represen-
tation makes our approach independent from a specific model transformation
language. The mapping to of a concrete model transformation is performed by
a model-to-text transformation.

The detection process is performed in three automated steps. First, the
transformation is mapped to an abstract representation (i.e., facts) using a
higher-order transformation. Second, we identify which rules of the model trans-
formation can play the role of the participants of the design pattern. Third, once
the participant candidates are identified, we verify that their execution satisfies
the scheduling scheme specified in the design pattern.
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Fig. 3. Architecture overview of design pattern detection

In the remainder of this section, we describe how concrete model transforma-
tions are mapped to generic facts and then explain the two steps of the detection
process.

3.2 Mapping Model Transformations to Generic Facts

Fact Template. To describe model transformations, we defined a fact-based
language inspired by the Henshin transformation language [1]. The motivation
behind this decision is that design patterns, as defined in [17], deal mainly with
the manipulation (creation/modification/deletion) of model elements by rules as
well as with the rule execution scheduling. All these constructs can be described
by the Henshin concepts.

The main fact template to describe a transformation is Rule. A Rule is com-
posed of nodes, each corresponding to an action on a model element present in
the pre- or post-condition of a model transformation rule. Nodes are described
by the fact template Node. Nodes have several attributes to define the element
name and type they represent, a reference to the rule in which they appear,
and also an action. If the action slot is assigned “create”, “update” or “delete”,
then the node is part of the post-condition of the transformation rule. If it
is assigned “preserve” or “forbid”, then the node is part of the pre-condition
(positive or negative constraint, respectively) of the transformation rule. Nodes
may also be related with the Edge fact template when the action in one node
depends on another node, e.g., an element is created and its attributes are set
according to those of another element. For rule execution scheduling, we define
the fact template Sequence that specifies the precedence between two rules.
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The precedence relationship may also involve control events such as the begin-
ning and the end of a loop.

Listing 1.1 shows fact templates for Rule, Node, and Sequence expressed
in the Jess language [6]. In Jess, each template has a name and a set of slot
definitions. When asserting a fact, the slots must be set with values. Some slots
are used to describe the fact properties such as Name in Rule and Action in
Node. Others are used to connect facts. For example, the slot RuleId in Node
is set with the Id of the Rule which the node belongs to. Similarly, SourceId
and TargetId in Sequence refer respectively to the Ids of the preceding and
following rules.

Listing 1.1. Fact Templates representing a model transformation language

1 (deftemplate Rule (slot Id)(slot Name))

2

3 (deftemplate Node (slot Id)(slot RuleId )(slot Action)

4 (slot Occurrences )(slot Name)(slot Type))

5

6 (deftemplate Sequence(slot SourceId )(slot TargetId ))

Fact. Listing 1.2 shows the Jess facts of a rule having two nodes.

Listing 1.2. Fact representing a concrete model transformation

1 (Rule (Id"R1")(Name"Class2TableMapping "))

2

3 (Node (Id"N1")( RuleId"R1")

4 (Action"preserve")( Occurrences "n")(Name"")(Type"Class"))

5

6 (Node (Id"N2")( RuleId"R1")

7 (Action"create")( Occurrences "n")(Name"")(Type"Table"))

To be effective for large transformations, we automate the mapping of a given
concrete model transformation to a set of facts. Therefore, we need to write a
fact generator for each model transformation language considered. To this end,
we use Acceleo1, a template-based model-to-text transformation tool in EMF.
These code generation templates encode the semantic equivalence between the
transformation language constructs and our fact templates. Listing 1.3 illustrates
an example for generating of a fact Rule from a Henshin rule. Although our
implementation currently supports Henshin, adapting to another model trans-
formation language simply requires to create a new Acceleo template for it.

Listing 1.3. Fact representing a concrete model transformation

1 [template public generateRule(rule:Rule , position:Integer )]

2 (Rule (Id \"["R" + position ]\") (Name \"[ rule.name /]\"))

3 [/ template]

1 https://eclipse.org/acceleo/.

https://eclipse.org/acceleo/
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3.3 Encoding Design Patterns as Detection Rules

As mentioned in Sect. 2.2, the participants of a model transformation design
pattern are DelTa rules, the elements they contain in their constraint and actions,
and their scheduling scheme. The pattern Entities Before Relations in Fig. 2, for
instance, consists of two DelTa rules: entityMapping and relationMapping. It also
mandates that the former must be executed before the latter. Consequently, our
detection strategy starts by finding concrete model transformation rules that
match the ones in the DelTa model, and then verify if the scheduling specified
in the patterns holds for the concrete matched rules.

Listing 1.4. Rule encoding the complete entityMapping rule of Entities before Rela-
tions design pattern

1 (defrule CreateEntityMapping_Rule

2 (Rule (Id ?r_1)(Name ?r_2))

3 (Node (Id ?sEnt_1 )( RuleId ?r_1)( Action"preserve")

4 (Occurrence ?sEnt_4 )( Name ?sEnt_5 )(Type ?sEnt_6 ))

5 (Node (Id ?tEnt_1 )( RuleId ?r_1)( Action"forbid")

6 (Occurrence ?tEnt_4 )( Name ?tEnt_5 )(Type ?tEnt_6 ))

7 (Node (Id ?tEnt_2 )( RuleId ?r_1)( Action"create")

8 (Occurrence ?tEnt_4 )( Name ?tEnt_5 )(Type ?tEnt_6 ))

9 (Edge (Id ?ed_1)( RuleId ?r_1)( SourceId ?sEnt_1)

10 (TargetId ?tEnt_1 ))

11 (Edge (Id ?ed_2)( RuleId ?r_1)( SourceId ?sEnt_1)

12 (TargetId ?tEnt_2 ))

13 =>

14 (assert

15 (EbR_entityMapping

16 (Id (str-cat ?r_1 ?sEnt_1 ?tEnt_1 ?tEnt_2 ?Ed_1 ?Ed_2))

17 (RuleId ?r_1)

18 (sEnt_1Id ?sEnt_1)

19 (tEnt_1Id ?tEnt_1)

20 (tEd_1Id ?ed_1)

21 (tEnt_2Id ?tEnt_2)

22 (tEd_2Id ?ed_2)

23 (accuracy 1))

24 )

25 )

The detection of instances of a DelTa rule is encoded as a rule in Jess.
For example, Listing 1.4 rule detects complete instances of entityMapping. The
Jess rule first filters all transformation rule facts that have a “preserve” node
connected to a “forbid” node and to a “create” node. For each rule satisfying
these conditions, it asserts a fact EbR entityMapping. Another Jess rule will filter
the concrete rules that can play the role of relationMapping and asserts for each
match a fact EbR relationMapping. The encoding of DelTa rules into Jess rules
can be implemented with Acceleo templates.

Once the potential participants are detected, the next step is to ensure if the
execution schedule of the concrete rules corresponds to the one of the pattern.
In the case of the pattern Entities Before Relations, a Jess rule filters facts
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EbR entityMapping and EbR relationMapping, and a Sequence fact relating the
rules respectively involved in the participant facts.

3.4 Accuracy for Complete and Partial Instances

In the case of complete instance detection, all the conditions (participants and
scheduling) should be fully satisfied, i.e., accuracy equals 1.

When detecting partial instances, rules variants are defined for participants
and scheduling detection. These rules may omit one of the conditions and adjust
the value of fact accuracy accordingly. For example, in the detection of enti-
tyMapping participants, a variant rule can consider rules with “preserve” and
“create” nodes, but without a “forbid” node. This is depicted in Listing 1.5. The
accuracy is then adjusted to 0.66 for example. The scheduling verification rule,
calculate the global accuracy of the pattern instance from the accuracy values
of the participants facts and one of the scheduling itself.

Listing 1.5. Rule encoding a partial entityMapping rule of Entities before Relations
design pattern

1 (defrule CreateEntityMapping_Rule

2 (Rule (Id ?r_1)(Name ?r_2))

3 (Node (Id ?sEnt_1 )( RuleId ?r_1)( Action"preserve")

4 (Occurrence ?sEnt_4 )(Name ?sEnt_5 )(Type ?sEnt_6 ))

5 (not (Node (Id ?tEnt_1 )( RuleId ?r_1)( Action"forbid")

6 (Occurrence ?tEnt_4 )(Name ?tEnt_5 )(Type ?tEnt_6 ))

7 ...

8 =>

9 (assert

10 (EbR_entityMapping

11 (Id (str-cat ?r_1 ?sEnt_1 ?tEnt_1 ?tEnt_2 ?Ed_1 ?Ed_2))

12 (RuleId ?r_1)

13 (sEnt_1Id ?sEnt_1)

14 (tEnt_1Id"")

15 (tEd_1Id"")

16 (tEnt_2Id ?tEnt_2)

17 (tEd_2Id ?ed_2)

18 (accuracy 0.66))

19 )

20 )

4 Preliminary Evaluation

4.1 Setup

A preliminary evaluation of this work consists in selecting a subset of design pat-
terns and detect their instances on a sample of model transformations. The goal
here is to analyze qualitatively how our detection approach applies to concrete
transformations.
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We selected 13 Henshin transformations2 with different characteristics (see
Table 1). As we had to analyze manually the results, we opted for small-medium
transformations having 1 to 13 rules. We also paid attention to the control com-
plexity as most of the transformation design patterns deal with the rule execution
control. Indeed, some of the selected transformations use default implicit control
(no control specified), and others have up to 13 rule scheduling units with loops
and calls between the units. Additionally, we varied the complexity of the rules
with respect to the number of involved model elements, with an average number
of nodes per rule between 3 and 11.

Table 1. Selected transformations.

Model transformations #
ru

le
s

#
sc

h
-u

n
it

#
n
o
d
es

#
re

la
ti

o
n
s

#
ca

ll
s

#
lo

o
p

bank 3 0 12 12 0 0
bankmap 1 0 5 4 0 0

comb 2 1 22 38 1 1
diningphils 4 0 22 34 0 0

ecore2genmodel 8 6 55 59 12 2
gossipingGirls 2 0 7 9 0 0

grid-full 4 5 18 27 8 3
grid-sparse 3 4 11 16 6 2

java2statemachine 13 13 77 59 27 5
petriM 2 0 15 27 0 0

sierpinski 1 0 6 12 0 0
sort 1 1 3 2 1 1

entityRelationMapping 3 1 16 14 3 0

In this preliminary evaluation we experimented with the detection of three
patterns, selected from the catalog of [17]. Two of them deal with the rule mod-
ularization (Entities Before Relations and Construction and cleanup), and one
with optimization (Unique Instantiation).

Entities Before Relations. The goal of this pattern (Fig. 2), also called Map
Objects Before Links, is to create the entities and then their relations. As men-
tioned in Sect. 3.3, three rules are defined for the detection of this pattern:
(1) detection of entities creation, (2) detection of relations creation, and (3) prece-
dence checking between the two creations. In addition to the detection of complete
instances, we implemented the detection of one kind of partial instance, i.e., the
situation in which the transformation program have rules for creating the entities
before the creation of their relations, but does not check if an entity exists before
it creates a new one (see Sect. 3.4).

2 https://www.eclipse.org/henshin/examples.php.

https://www.eclipse.org/henshin/examples.php
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Construction and Cleanup. As shown in Fig. 4, this pattern consists in sepa-
rating rules which create model elements from those which delete elements [17].
Like for the previous patterns, the detection is done in three phases: (1) finding
element creation rules, (2) finding element deletion rules, and (3) precedence
checking between the two.

Fig. 4. Construction & cleanup - Structure in DelTa

Unique Instantiation. This pattern, sketched in Fig. 5, aims at avoiding mul-
tiple creations of the same model element. This may happen in two situations:
(1) two rules creating the same model element or (2) a rule creating a model
element, and that appears in a loop inside a rule execution schedule. We defined
detection rules for each situation, i.e., identifying element-creation rules, and
checking duplications and loops.

Fig. 5. Unique instantiation - structure in DelTa

4.2 Qualitative Analysis

Entities Before Relations. Surprisingly, our prototype did not find complete
instances of the pattern Entities Before Relations. To understand this, we man-
ually inspected the automatically detected partial instances. We noticed that,
in many cases, the EntityMapping participants were identified with an accu-
racy of 1. However, the relationMapping participants did not satisfy the con-
dition of the non-existence of a relation before its creation. All the detected
partial instances satisfied the execution schedule conditions with perfect accuracy.
Figure 1 illustrates two examples of partial instances found in the entityRelation-
Mapping e rules transformation. The rules ClassMapping and AttributeMapping
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are both complete instances of entityMapping. Conversely, in rule attributeRela-
tionMapping, the relation between “Class” and “Attribute” is mapped to a rela-
tion between “Table” and “Column” without ensuring that such a relation does
not already exist (not a “forbid” action). Although the scheduling is perfectly
accurate, i.e., both ClassMapping and AttributeMapping rules precede attribut-
eRelationMapping, the aggregated accuracy is lower than 1.

Construction and Cleanup. The prototype found many instances of the
design pattern Construction and cleanup. An interesting instance is one found
in the Java2StateMachine. In this transformation, only one rule has a “delete”
action (updateAction on the right of Fig. 6). All the other rules create elements.
This rule appears at the last step of the execution schedule (on the left of Fig. 6).
This is a non trivial instance to detect because of the modularization of the
execution schedule. In our detection program, we implemented a function that
reconstructs a flat schedule by resolving the schedule step references.

Fig. 6. An example of instance of the pattern Construction and Cleanup

Unique Instantiation. This is by far the most frequent pattern and many of
its instances were found in almost all the considered transformations. Some of
them have a high accuracy. An example of a complete instance was found in the
Ecore2GenModel high-order transformation. The createCustomizationUnit rule
creates an element, which is not created by other rules (Fig. 7a). Moreover, this
rule does not appear in a loop in the execution schedule (Fig. 7b).
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(a) Creation rule (b) Cleaning instance

Fig. 7. Unique instantiation instance detected in Ecore2Genmode transformation

5 Conclusion

In this paper, we propose an approach and a preliminary implementation for the
detection of complete and partial instances of design patterns in model transfor-
mations. Our approach follows a declarative strategy which consists in identify-
ing transformation rules that play the roles of design pattern participants and
then check if their execution sequence conforms to the schedule specified in the
pattern.

We conducted a preliminary evaluation which consisted in applying our detec-
tion rules on a set of transformations and in qualitatively analyzing the detection
results. Although the obtained results are encouraging, our evaluation revealed
some limitations. First, we define explicitly rules for detecting pattern vari-
ants [20]. The advantage of this strategy is that we identify acceptable variants
of a design pattern. The drawback is that our detection code is very verbose with
very similar rules. We plan in the future to have a generic detection of variants
by allowing weights to the pattern participants.

Another limitation of our approach resides in the limited number of con-
trol structures we handle. In our current implementation, we do not consider
alternatives structures. Thus for the pattern Unique Instantiation, if two rules
respectively in the two branches of the alternative create the same element, we
do not detect a valid instance. Handling more control structures is a part of our
future work.
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